High-order Discontinuous Galerkin Methods for Incompressible Flows

نویسندگان

  • A. Montlaur
  • S. Fernández-Méndez
  • A. Huerta
چکیده

Abstract. The spatial discretization of the unsteady incompressible Navier-Stokes equations is stated as a system of Differential Algebraic Equations (DAEs), corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Runge-Kutta methods applied to the solution of the resulting index-2 DAE system are analyzed, allowing a critical comparison in terms of accuracy of semi-implicit and fully implicit Runge-Kutta methods. Numerical examples, considering a discontinuous Galerkin Interior Penalty Method with piecewise solenoidal approximations, demonstrate the applicability of the approach, and compare its performance with classical methods for incompressible flows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Spectral-Element Discontinuous Galerkin Lattice Boltzmann Method for Incompressible Flows

We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving single-phase incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based...

متن کامل

A High Order Discontinuous Galerkin Method for 2D Incompressible Flows

In this pat)er we introduce a high order discontinuous Galerkin method for two dimensional incoinpressible flow in vorticity streamfunction fornnllation. The inonlentuni equation is treated exl)licitly, utilizing the efficiency of the discontimtous Galerkin method. The streanlflmction is obtained by a standard Poiss(m solver using (:ontinu(lus finite elenmnts. There is a natural matching betwee...

متن کامل

High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows

In this paper we present an efficient discretization method for the solution of the unsteady incompressible Navier-Stokes equations based on a high order (Hybrid) Discontinuous Galerkin formulation. The crucial component for the efficiency of the discretization method is the disctinction between stiff linear parts and less stiff non-linear parts with respect to their temporal and spatial treatm...

متن کامل

Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow

The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for the Oseen equation, and assess the performance of the schemes for incompressible Navier-Stokes equa...

متن کامل

Final Report of NASA Langley Grant NCC1-01035 Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows

methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010